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Executive Summary 

One of the responsibilities of the Environmental Protection Agency’s Office of Pesticide Programs is to 
estimate the typical and maximum percent of a crop treated (PCT) with a particular pesticide. These 
estimates, referred to as “likely average PCT” and “likely maximum PCT”, could be reflective of 
expected pesticide use in the short-term future (three to five years). The Office of Pesticide Programs 
(OPP) may estimate forecasts (projections) of PCT values. OPP worked for some time to develop a 
methodology to calculate PCT. This paper details recent progress towards refining these PCT 
projections. 

To improve estimates of PCT, OPP considered various methods for estimating typical and maximum 
PCT along with criteria for selecting an appropriate model. This paper presents a brief account of the 
advantages and disadvantages of these methods and criteria. The finalized version of the forecasting 
methodology outlined by OPP includes a forecasting method, various “models” within the forecasting 
method to project typical PCT, a model selection criterion that identifies the most appropriate model 
and a model specific upper prediction interval (upper bound) to project maximum PCT. Additionally, 
OPP performed an evaluation of the forecasting methodology’s accuracy. An objective measurement 
commonly used in forecasting “competitions” to quantify accuracy was employed to compare the 
proposed forecasting methodology to some benchmark methods, including the method currently in use. 
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1 2 Introduction 

1.1 Regulatory Overview 

Pesticides are regulated in the U.S. under the Federal Insecticide, Fungicide, and Rodenticide Act

(FIFRA) and the Federal Food, Drug and Cosmetics Act (FFDCA). In 1996, Congress passed the

Food Quality Protection Act (FQPA), which amended both FIFRA and FFDCA by requiring that

aggregate and cumulative risks be considered by the Environmental Protection Agency in granting

pesticide tolerance petitions and in assessing whether pesticides can be reregistered for use. Through

these statutes, EPA evaluates risks posed by the use of each pesticide to make a determination of

safety. Only if the Agency determines that such residues would be “safe”, may it authorize a tolerance

to allow a pesticide residue in food.


One of the responsibilities of EPA’s Office of Pesticide Programs (OPP) is to assess the potential risks

from pesticide residues for food consumption. The size of the potential risks depends on a variety of

factors including the toxicity of the pesticide (how much harm, if any, is caused by specific amounts of

the pesticide) and the magnitude of the exposure to the pesticide. In turn, exposure to a pesticide in the

food supply depends on two factors: the amount of the pesticide present in food and how much food a

person eats. 

To develop estimates of such exposure, the Agency must use available and reliable, representative data

for such risk assessments. These data include pesticide use statistics such as the percent of a crop

treated (PCT) with a particular pesticide. 


The FQPA-amended FIFRA also requires that OPP re-evaluate risks on a continuing basis. 

Specifically, the act permits the Agency to consider the percent of a crop that is treated with a pesticide

(PCT), but requires that this information be re-evaluated (and, if necessary, the risk assessment be

adjusted) after five years. Thus, estimates of PCT should be reflective of future pesticide use based on

information from OPP data sources. 


OPP is attempting to develop standard procedures that can be routinely used by a broad audience as a

“first step” in projecting PCT. It is important than any such “first step” be well documented, clear and

transparent, and reasonably simple to perform. Therefore OPP has compiled the current document to

detail the development, realization, and evaluation of the methodology proposed to forecast “likely

average” and “likely maximum” PCT. OPP recognizes that the function of any forecasting tool is not to

rigidly dictate a forecast projection but rather to serve as a systematic means of illuminating and

highlighting patterns and trends in data. Specialized professional expertise and experience, including

specific knowledge of and judgment regarding agricultural practices and structural changes in the

pesticide markets, can override forecasts based predominantly on standardized forecasting procedures. 

OPP believes that the methods described in this document will substantially improve our ability to

realistically evaluate the potential exposure of individuals and the population to pesticides and contribute




to the goal of protection of public health. 

1.2 Forecasting Methodology and Policy Issues 

It is important to note that implementing methods for forecasting pesticide use will necessarily involve 
and draw from a variety of “science policies.” That is, implicit to any decision that involves prediction 
or forecasting are questions related to “How sure?”, “How often?”, “With what confidence?”, “Over 
what time period?” and “How likely?.” Each of these is an issue that can be informed by the science of 
statistical forecasting, but for which that discipline can offer no firm, uncontested, or incontrovertible 
answers. Any so-called “answers” to such questions are inherently judgmental in nature. This guidance 
does not investigate, nor even attempt to explore, the intricate nature of these decisions. Instead, it will 
simply recognize that consideration of these policy issues is on going and that further discussion in this 
area is needed. 

Since the approaches discussed in the document are intended to apply only to the methodological 
aspects of the forecasting process, it is important to note that the approaches discussed herein do not 
support or prescribe the use of any one particular confidence level, percentile, percentage, or 
forecasting period associated with the process of regulatory decision-making. Thus, although the 
document may discuss a “95th percentile upper prediction interval” or a “five-year time horizon”, these 
decisions have not been made and should not be inferred. Instead, they should be accepted solely as a 
simplification designed to make the technical discussion more concrete and the science policy “decision 
points” more apparent. Although this paper makes no attempt to directly address these issues, there 
are no intrinsic limitations in the methodology that would prevent such forthcoming decisions from being 
made or the described methodology from being adapted to include these decisions. 

1.3 Scope and Organization of Document 

Section 2 of this document details the development of the methodology proposed by OPP for

forecasting PCT. An important component of detailing the development of the proposed methodology

is a description of OPP’s approach to forecasting PCT. Topics covered in this section include

identifying candidate forecasting methods and model selection procedures. Documentation of this stage

is motivated by EPA’s practice of soliciting public participation and guidance for the development of its

scientific methods. OPP believes an understanding of the decision process used to arrive at the

proposed forecasting methodology will help to make this process transparent. 


Section 3 describes the finalized version of the forecasting methodology, which is based on the

exponential smoothing forecasting method. A desirable aspect of any standardized procedure

employed by OPP for the purpose of forecasting PCT is that the process should be transparent,

accessible, and reproducible. Therefore this section will provide a broad overview of the steps

involved in producing PCT forecasts. These steps include parameter optimization, model selection, and

calculation of PCT forecasts. 

In order to gauge the accuracy of OPP’s proposed methodology, section 4 includes an empirical




evaluation of the forecasts of various models. In an attempt to evaluate the ability of the methodology to 
select the “best” forecasting model, the forecasts of various models are compared to those of the 
methodically selected model. This “competition” is intended to evaluate the predictive accuracy of the 
methodically selected model. 

2 Methodological Development 

2.1 Candidate Forecasting Methods 

Pesticide use is a dynamic process that is subject to unpredictable factors such as weather, pest 
population, and the pesticide market itself. These factors influence the pesticide applicators’ decision-
making process when seeking to answer questions such as: “Does a crop need to be treated this 
year?”, “If so, how much of the crop should be treated?”, “At what rate should the pesticide be 
applied?”, and “Is the cost of pesticide application worth the increase in expected crop yield?.” 
Modeling the complex relationships between these factors and the applicators’ decision-making 
process, in order to forecast PCT, would require overwhelming amounts of information. As such, 
multivariate methods that attempt to model the relationship between percent crop treated and a wide 
variety of explanatory variables were ruled out as candidate methods. Rather OPP has focused on 
univariate methods where forecasts depend only on the past values of PCT. 

The exclusive use of historic data for producing forecasts is the identifying characteristic of extrapolation 
methods. Methods that can be used to extrapolate time series data such as PCT include linear 
regression, Box-Jenkins methods, and exponential smoothing. The models provided by these 
extrapolation methods in addition to a simple mean/average model were considered as candidates for 
forecasting PCT. A brief description of the methods and/or model(s) and the reasons for 
eliminating/including them as part of OPP finalized methodology follow. 

2.1.1 Mean/Average Model 

The mean model is one of the simplest methods that could be used for forecasting time series data. To 
arrive at a forecast, all that is required is taking the arithmetic mean (i.e. average) of the past 
observations. By estimating percent crop treated as the mean of the past values, one assumes that the 
observations are independent samples from a common population and that any differences are due to 
some random error. In other words, any variation in the annual values is unexplained. Such a method 
would not account for any trend in the data. Initially, OPP considered using the mean model for time 
series that do not exhibit a trend. Using this method on a time series that is exhibiting a trend would 
expose the forecasts to serious criticism. For example, if the use of a pesticide has been increasing (or 
decreasing), one could argue that the average underestimates (or overestimates) the pesticide’s use. 
Nonetheless, instances in which little data is available, such as a newly registered and/or reported use, 
the mean model could provide adequate forecasts. This method was eventually discarded in favor of 
other forecasting techniques, but still serves as “benchmark” method with which to compare forecasts. 



2.1.2 OLS Regression 

Although commonly employed as a multivariate method, linear regression can be used as a univariate 
method for time series data. The linear regression approach models the relationship between the data 
points and the time of their observation as a linear function. The linear relationship is specified by the 
slope and intercept parameters. Regression methods differ in the procedures used to estimate the 
values of these parameters. The most commonly used method is ordinary least squares (OLS), which 
estimates the parameters by minimizing the squared residuals. The residuals are the differences 
between the “predicted” values and actual values of the time series (here predicted refers to the value of 
a data point as estimated by the OLS model, not in the sense of forecasting). 

The nature of the trend in a time series is related to the concept of “stationarity.” Generally a time series 
is stationary if the mean and variance are constant over time and the value of the covariance between 
two time periods depends only on the distance between two time periods and not the actual time at 
which the covariance is computed. With linear regression, the mean of the time series is modeled to 
increase or decrease by the same amount for every time period; the change from one time period to the 
next is the slope parameter. Thus the time series is considered nonstationary. However with linear 
regression, one assumes the time series can be stationarized by accounting for the trend. In other 
words, if one were to subtract the trend from each observation, the time series would have a constant 
mean and variance. This type of trend is referred to as a deterministic trend. Generally a deterministic 
trend is constant throughout the time series; while a variable trend is referred to as being stochastic. 
OPP believes it is more realistic to assume that trends in PCT may change over time. Therefore linear 
regression methods for forecasting PCT were ruled out. 

2.1.3 IRLS Robust Regression 

In addition to OLS regression, OPP considered iteratively re-weighted least squares (IRLS) regression. 
IRLS regression is more specifically classified as a robust regression method. The term “robust” refers 
to the method’s goal of obtaining robust parameter estimates by dampening “outlier” effects. An outlier 
is an observation with a relatively large residual. Sometimes the residual of an outlying observation is 
“balanced out” by the residuals of the other observations (more common for cross-sectional data than 
to time series data). Other times, outliers can greatly affect parameter estimation. The potential 
influence a data point has on parameter estimation is referred to as leverage. IRLS aims to diminish the 
leverage of these outliers by weighting the residuals via some weight function(s). Generally, 
observations with relatively large residuals are assigned smaller weights than those of observations with 
relatively small residuals; thus mitigating the leverage of outliers. As the name implies, IRLS repeats the 
process of weighting the residuals and calculating the parameter estimates until there is negligible 
difference between subsequent sets of weights (Hamilton, 1992). 

In addition to modeling a deterministic trend, there is another disadvantage of using IRLS to forecast 
PCT. IRLS was examined due to its ability to “down-weight” outlying observations. OPP thought this 
would be helpful in situations where some of the earlier values for PCT were uncharacteristically high or 



low compared to more recent observations. Such a change in the “level” of PCT could be due to some 
shift in the market, such as the registration or cancellation of some competitive chemical; or a consistent 
increase or decrease in pest pressure. The hope was that IRLS would be able to discount these initial 
observations and start tracking the most recent level and trend of the time series. However, robust 
regression regards outlying observations the same whether they occur at the beginning or the end of the 
time series. If such change(s) were to take place and the most recent observations of PCT were 
reflective of such change(s), OPP certainly would not want to disregard such observations when 
calculating PCT forecasts. 

2.1.4 Box-Jenkins Methods (ARIMA) 

Box-Jenkins (BJ) methods were also considered for forecasting PCT. BJ methods model time series 
as autoregressive integrated moving average (ARIMA) processes. When modeling a time series as an 
ARIMA process, the first step is to stationarized the data. Differencing is a commonly used method for 
stationarizing time series data. The process of differencing a time series involves taking the difference 
between subsequent observations. The term “integrated” (I) in ARIMA refers to this differencing 
process. Once a stationarized, the data is modeled to be an autoregressive (AR) process and/or 
moving average (MA) process. Generally an AR process models an observed value to be depend 
upon previously observed value(s), a constant term (i.e. deterministic) and a stochastic term. An MA 
process models an observed value to be dependent upon a constant term and a linear combination (i.e. 
weighted average) of multiple stochastic terms. The above explanations provide a generally description 
of ARIMA processes; a determination of the ARIMA process which best fits a particular time series is 
a iterative procedure that involves analyzing the residuals of the ARIMA process. 

The BJ methods were developed as a framework to recognize and exploit patterns of variability in time 
series data. Identifying characteristics of the time series are then used to select an appropriate ARIMA 
process to model. The fact that BJ methods incorporate procedures for identifying and modeling 
nonstationary time series (and variable trends) makes it an attractive univariate method. However, it is 
generally accepted that at least fifty observations is needed to employ such methods. Typically time 
series for PCT contain much fewer observations. As appealing as BJ methods are, OPP believes the 
majority of PCT time series would not meet the data requirements for applying BJ methods. 

2.1.5 Exponential Smoothing 

Exponential smoothing (ES) methods were considered by OPP for the purpose of forecasting 
PCT. ES methods model time series data in the manner similar to BJ methods. In fact many ES 
models have an equivalent ARIMA model. The ES models of interest to OPP, simple exponential 
smoothing (SES), linear exponential smoothing (LES), and damped-trend exponential smoothing 
(DES), all have ARIMA equivalencies. Although BJ and ES methods can model seasonality in 
time series data, seasonality is not a relevant characteristic of annual data such as PCT. Like 
BJ methods, the ES methods can be used on nonstationarity data. However unlike BJ methods, 
the ES model selection procedure is typically not based on examining the residuals to determine 
if a model effectively stationarizes the data. 



Every ES model can be considered as having two components: level and trend. Both the level 
and trend have a corresponding smoothing parameter, aand b respectively. For the models of 
interest, the smoothing state is the arithmetic sum of these two components. The smoothing 
state is the estimated or fitted value of an observation for particular time period. ES models 
attempt to estimate the value of these components based on weighted averages of the 
observations (for the level) or differences in the observations (for the trend). The weights are 
specified such that the most recent observations have the greatest effect on a component’s 
estimation. In fact, the name “exponential smoothing” is derived from the specification that the 
weights increase “exponentially” from the most distant to the most recent observation--thus 
providing “smoothed” estimates of the level and trend. 

The smoothing parameters assume values from zero to one and determine the value of the 
weights. When a smoothing parameter is equal to one, all of the weight is given to the most 
recent observation. Thus the estimate of the corresponding component is completely determined 
by the previous observation. At the other extreme, when a smoothing parameter is equal to 
zero, the weights are all the same: zero. Thus the value of the component is never updated from 
its initial estimate. These extreme values can yield useful model equivalencies. For example, 
when a is equal to one, the SES model is equivalent to the “naïve” model where the forecast for 
a time series is simply equal to most recent observation. Typically however, values in between 
these extremities are used to specify ES models. The larger the value of a smoothing parameter, 
the more influence the observations from the recent past will have on the component 
estimations. Conversely when smoothing parameters assume smaller values, the influence of 
component estimation is more evenly distributed among observations from the distant and 
recent past. 

Being the most basic of the ES models, the simple ES model can be considered as having a trend 
component equal to zero. In other words, the smoothing state is simply the level component. 
The SES model attempts to track the changing level of a time series. If the smoothing parameter 
is relatively small, then the time series is being model as having a level that does not change 
much from year to year. On the other hand with a relatively large smoothing parameter, the 
SES model updates its estimate of the level frequently. For the SES model, the forecasts are the 
same regardless of the number of years being forecasted. 

The linear ES model has the added complexity of including a trend component (not equal to 
zero). The term “linear” refers to the additive nature of the trend component: the smoothing 
state is equal to level plus the trend. In conjunction with modeling the changing level of the 
observation, LES also models the shifting trend in the series. As with the simple model, the 
smoothing parameters govern how often the components are revised. Thus a time series can be 
modeled as having a fairly stable level (small a) and a trend component that changes frequently 
(large b). The LES forecasts increase by an amount equal to the last estimate of the trend 
component. To illustrate, if ln is the last estimate of the level for a time series and bn is the last 
estimate of the trend, then the forecast for next three years would be ln + bn , ln + 2*bn , and ln + 
3*bn respectively. 



In addition to having a level and trend component, the damped-trend ES model includes a 
parameter not previously mentioned: the damping coefficient, f. As the name implies, damped-
trend model damps the trend component of the model. Like aand b, the damping coefficient 
can vary from zero to one. The closer f is to zero, the more rapidly the trend is damped. 
Conversely, the damping of the trend is more gradual when f is larger. In fact the linear model 
is a special case of the damped-trend model for which f is equal to one. The DES is a useful 
model when there is evidence to suggest that the current trend in the data is unlikely to continue. 
As an example the forecasts for the next three years would be ln + (f)*bn , ln + (f + f2)*bn and 
ln + (f+ f2 + f3)*bn respectively. 

The ES method has some very attractive characteristics: the models available with this method 
allow for a variety of trends, put more emphasis on the most recent observations and are not 
data intensive. Until recently the lack of a well-developed modeling framework presented some 
disadvantages to employing the ES method. However, in recent years Hyndman and others 
(Hyndman et al forthcoming) have done some innovative work to provide analytical formulae 
for the forecast variances of these models. These formulae allow for the calculation of 
prediction intervals for exponential smoothing forecasts. As such, ES models are the focus of 
OPP’s proposed methodology for forecasting PCT. 

2.2 Model Selection Criteria 

This subsection details some procedures considered by OPP for selecting an appropriate 
exponential smoothing model to forecast a particular time series. The model selection criteria 
that are the basis of these procedures are the Gardner-McKenzie protocol and the Bayesian 
information criterion. The Gardner-McKenzie protocol selects a model by examining time series 
before fitting any of the models to the data. In contrast, the Bayesian information criterion selects the 
best model after the various exponential smoothing models have been fitted to the data. Ultimately use 
of the Gardner-McKenzie protocol lacked empirical support. While other model selection criteria 
similar to the Bayesian information criterion, such as Akaike’s information criterion are favored by 
researchers (Hyndman et al 2002). Both methods are presented in the following section, although the 
Bayesian information criterion was ultimately chosen as the basis for model selection procedure. 

2.2.1 Gardner-McKenzie Protocol 

The Gardner-McKenzie protocol (GMP) is a simple procedure for classifying trends in time series 
data (Gardner 1988). Once the trend has been classified, Gardner suggests which exponential 
smoothing model to use. To determine the type of trend present in the time series, the variance of the 
observations is compared to the variance of first order differences of the observations and the variance 
of the second order differences of the observations. The first order differences are calculated by taking 
the arithmetic difference between subsequent observations. Similarly the second order differences are 
calculated by taking the arithmetic difference of the first order differences. The protocol is based on the 
proposition that if there is no trend in the time series then the variance of the observations is the 



minimum, if there is a moderate trend then the variance of the first order differences is the minimum and 
if there is a strong trend then the variance of the second order differences is the minimum. For a trend 
categorized as “none”, “moderate” or “strong”, Gardner suggests using simple, damped-trend and 
linear exponential smoothing respectively. An example demonstrating the use of the GMP is given in 
Table 1. The first order and second order differences are denoted as DPCT and D2PCT respectively. 

2.2.2 Bayesian Information Criterion 

The Bayesian information criterion (BIC) is a statistic that quantifies the relative “goodness-of-fit” and 
“complexity” of a model. The component of the BIC that measure the goodness-of-fit of the model is 
the mean squared error (MSE). For the exponential smoothing models, the MSE is similar to the more 
familiar MSE associated with regression models. In general, the MSE is the average or “mean” of the 
“square” of the “errors”, where the error is simply the difference between the fitted value of the model 
and the observed value of the time series data. Mathematically, 

where n is the number of observations in the time series, and are the observed and fitted values of the 

observations respectively. A relatively small MSE is indicative of a model that fits the historical data well. At the 
same time, the number of parameters employed to calculate these fitted values can supplement the MSE measure of 

accuracy. These two concepts are central to the definition of the BIC, which can be formalized as: 

where, as before, n is the number of observations in the time series, k is the number of parameters for 
the model, and ln(.) refers to the natural logarithm. As with the MSE, a minimal BIC indicates a “good” 
model. Holding the MSE constant, it can be seen that for a given time series as the number of 
parameters used to specify a model increases, the BIC increases. Thus the BIC “penalizes” models 
with more parameters. The purpose of using the BIC is to select the model that provides the “best” fit 
to the historical data with the minimal number of parameters. The rationale behind this model selection 
procedure is that the model that performs well at fitting will also perform well at forecasting. 

2.3 Estimating Maximum PCT 

When describing PCT forecasts, it has been understood that the pesticide use statistic referred to has 
been the “likely average PCT.” “Likely average PCT” is the term OPP uses when denoting typical or 
average use for the pesticide crop combination of interest (usually at the national level). However, 
another pesticide use statistic utilized by OPP is the “likely maximum PCT”, the maximum percent of a 
crop expected to be treated with a specific pesticide (again, usually at the national level). OPP 



considered several different techniques for estimating the likely maximum PCT. These include general 
techniques that could be used regardless of the specified model, and others that are model specific. 

2.3.1 General Techniques 

General techniques could be used for estimating maximum PCT that do not take into account the model 
being used to forecast the “likely average PCT” or its parameters. OPP considered several options, 
which can be characterized unsophisticated. Generally, the maximum of the historical observations 
might serve as an estimate of the “likely maximum PCT”, and has been by at least one OPP 
stakeholder. OPP decided that such estimates were inadequate representation of maximum use. If 
historic maxima were used for a crop that has not experienced high pest pressure, they could greatly 
underestimate future maximum use. On the other hand, if a pesticide is exhibiting a decidedly 
decreasing trend in usage, the historic maximum may grossly overestimate the maximum PCT. Such 
general techniques do not utilize all relevant information when estimating likely maximum PCT, and OPP 
has focused on other options. 

2.3.2 Model Specific Techniques 

The model specific techniques employed by OPP involve calculating prediction intervals. To be more 
precise, the upper bound of a prediction interval or upper prediction interval (UPI) is of primary interest 
to OPP. Generally, a UPI is a point estimate plus some multiple of the estimated standard deviation the 
model error. Additionally, there is a specific “confidence level” associated with the UPI based on 
assumed distributional properties of the model errors. As an example, for the “mean model” described 
earlier, one could use a UPI for a normal distribution as detailed in Hahn (p. 63). Given n normally 
distributed observations with standard deviation s, there is a 100%X(1-a) probability that none of the 
next m future observations will exceed the upper bound, 

where r is a tabulated probability distribution specifically for calculating prediction intervals for 
observations from a normal distribution . In this case, the estimate standard deviation of the model 
error would be s, the square standard deviation of the observations. For a with a value of 0.05, the 
confidence level associated with this UPI would be 95% or 100%X(1 - 0.05). A conservative estimate 
(i.e. underestimate) for this upper bound that utilizes the more familiar and readily computable t statistic 
is, 



It is important to keep in mind that this UPI is not expected to be exceeded by any of the next m future 
observations. This is quite different than computing five separate prediction intervals for each of the 
next m future observations. Inspection of the formula for calculating this conservative estimate of the 
UPI for the mean model verifies some of its intuitive properties. The UPI becomes larger when the 
number of future observations being predicted (m) increases or when the variability of the data series 
(s) increases. However, the UPI diminishes as the number of observations (n) increases. 

Similar UPIs can be calculated for other forecasting models considered in this paper. Analytic UPIs 
hinge on the calculation of an estimate of the error variance (square of the standard deviation of the 
model errors). For methods such as regression and Box-Jenkins, estimates of the error variance for the 
various models have been specified and are widely used. Until recently, this has not been the case with 
exponential smoothing methods. Some exponential smoothing models do have equivalent ARIMA 
models, from which “reasonable” estimates of the forecast error can be calculated (Armstrong 2001, p. 
481). However, Hyndman and his colleagues laid the foundation for computing UPIs for several ES 
models (2002). For the ES models that have ARIMA counterparts, these estimates of the error 
variance are in agreement with one another. 

Unlike the mean model, for these ES models there is no direct method for computing a UPI to contain 
multiple future observations-such UPIs are sometimes referred to as simultaneous UPIs. However, 
OPP is interested developing an estimate for the “likely maximum PCT” for more than one year, which 
would entail the use of simultaneous UPIs. Therefore, OPP is considering calculating such UPIs by 
specifying an upper bound such that the product of the confidence levels of the single year UPIs is equal 
to the desired overall confidence level. To illustrate, suppose for a specific PCT time series, OPP 
would like to calculate a UPI for which there would be a 95% probability that the UPI would not be 
exceeded for any of the next three years. The confidence levels for the individual UPIs would 
necessarily be greater than 95%. One possible combination of the individual confidence levels that 
would yield the desired overall confidence level of 95% would be 99.5%, 98.5% and 97% ( 0.995 x 
0.985 x 0.970 » 0.95 ). 

For any given ES model, the error of a point forecast is characterized by the MSE, the values of the 
estimated models parameters and the number of time periods beyond the last observation being 
forecast. Thus the estimated error variance and, hence, the UPI is determined by how well the model 
fit the data, how much weight is given to recent observations, how rapidly the trend is dissipating and 
how far in the future the estimate is being provided. 

3 Proposed Methodology 

Having described the development of the methodology, this paper will now focus on the methods and 
procedures that make up OPP’s proposed methodology for forecasting PCT. Of the univariate 
techniques considered by OPP, exponential smoothing is simple, yet it provides an assortment of 
methods for modeling data. There are procedures for implementing ES methods such that the whole 
process of parameter selection, model selection, and forecasting can be automated. It is important to 
note that any automated forecasting procedure employed by OPP for the purpose of estimating PCT or 



any other pesticide use statistic will be reviewed by an analyst. Ultimately it is the analyst’s 
responsibility to ensure that the estimate is reasonable and to adjust the estimate to be reflective of 
changes in the pesticide market not captured in existing usage data, such as the introduction or 
discontinuation of alternative pesticides. 

3.1 Estimating Parameters of Forecasting Models 

Among the various exponential smoothing models, OPP selected ones which appear to be appropriate 
for forecasting PCT: simple exponential smoothing (SES), linear exponential smoothing (LES), and 
damped-trend exponential smoothing (DES). Each model has one or more components, referred to as 
level and trend. The SES model has a single component and a smoothing parameter, a, for the level. 
Both the LES and DES models have two smoothing parameters, one for the level (a) and one for the 
trend (b). Additionally, the DES model has a damping coefficient (f). The mean squared error (MSE) 
is used to estimate the parameters for each model. The values selected for a, b, and f for each model 
are those that minimize the MSE. Recall that the MSE for these models is similar to that use in OLS 
regression in that it is based on the differences between the fitted values and the actual values of the 
time series. Thus the values of a, b, and f are those that provide the “best fit” for the specific model. 

3.2 Model Selection 

Once model parameters have been estimated, forecasts of PCT can be calculated for each model, and 
the “best” of these three models can be identified. The model selection criterion employed in OPP’s 
methodology is the Bayesian information criterion (BIC). For the BIC, the model with the best fit is 
that which minimizes the MSE with the fewest number of parameters. For example, if both the SES 
and the DES models provide comparable MSE’s, one would select the SES model using the BIC 
because it has one parameter, while the DES model has three. The model with the smallest BIC is 
considered to be the “best” model. 

3.3 Forecasting PCT with Optimal Model 

Once the model that minimizes the BIC has been selected, one can forecast the values of “likely 
average PCT” and “likely maximum PCT” using that model. Depending on the number of years to be 
forecasted, the point forecast(s) of PCT from the “optimal” model is/are used for the likely average. 
For the simple ES model this forecast is simply the last estimated value of the model level. For the 
linear ES model, the point forecast is the last estimate of the level plus the last estimate of the trend. 
For the damped-trend ES model, the forecast is the last estimate of the level plus the damped-trend 
component, which is the last trend component adjusted by the damping coefficient. These estimates of 
likely average PCT are easily calculated. However, the estimates for likely maximum PCT are more 
complicated. 

In order to obtain estimates of the likely maximum PCT, the upper bound of simultaneous prediction 
intervals (UPIs) is calculated. As mentioned earlier, a simultaneous UPI is an upper bound for more 
than one year of forecasts. For OPP’s purposes, the number of years forecasted will generally be 



between three and five. The MSE serves as a basis for calculation of the forecast variance for the ES 
models. Other factors that affect the forecast variance are the parameter values of the model and the 
number years beyond the forecast horizon being forecasted. The forecast horizon is the last year (or 
other appropriate time unit) beyond which forecasts are obtained. As one would expect, since the 
reliability of a forecast decreases the further out one forecasts, the forecast variance increases as the 
years beyond the forecast horizon increases. Additionally, the more parameters there are, the larger the 
forecast variance. 

Once the forecast variance of each point forecast has been calculated, the simultaneous UPI can be 
obtained. The UPI is chosen such that the product of the confidence levels is equal to 95% 
(approximately). In order to determine the confidence level for a point forecast, the probability of the 
point forecast not to exceed the UPI is calculated. Given its forecast variance, this probability is 
computed for each point forecast. In order to compute these probabilities, one must first standardize 

the UPI. This is done for each point forecast ( ) by subtracting it from the UPI ( ) and dividing by the 

square root of its forecast variance ( ), 

Here the h+i subscript denotes the ith forecast beyond the forecast horizon h. These standardized 

values, the zi’s are assumed to be associated with a normal distribution. Each has an associated 

probability denoted as . That is, the probability of observing a value less than or equal to . This 

probability represents the confidence level of associated with the forecast. Additionally the probability 

is equal to the product of these individual probabilities, 

Here m denotes the number of point forecasts being made. Thus is the combined probability of 

observing values less than or equal to zi for all m zi’s, which represents the confidence level of the simultaneous UPI 
for all m point forecasts. Since the forecast variance and the point forecasts are fixed values, the UPI can be found 
by varying its value until the combined probability is approximately equal 0.95. 

4 Methodology Evaluation: An Empirical Example 

The primary motive for updating the OPP methodology for forecasting PCT is to provide more reliable and consistent 
estimates of PCT. The model selection process is a concept of the proposed methodology that makes it more 
appealing than the current methodology, which employs only one forecasting model. Therefore a “competition” was 
performed to not only compare the PCT estimates produced by the various exponential smoothing models and those 



of the current model, but to examine the proposed methodology’s ability to select the “best” model. Here the term 
“best” refers to the accuracy of forecasting model. A quantification of accuracy commonly used in empirical studies 
of forecasting methods is the mean absolute percentage error or MAPE. The term “error” refers to the forecasting 

error, the difference between the actual value (Yt) and its forecasted value ( ). The formula for computing the 
MAPE is 

In order to evaluate forecasts, a “hold out sample” must be specified. The hold out sample consists of 
observations that are not used to develop the model or the forecasts. The accuracy of forecasting 
model is evaluated by computing the MAPE for this hold out sample. 

For OPP’s purposes, a hold out sample consisted of five years of annual data from 1996 to 2000. 
Seventeen pesticide crop combinations (PCCs) were used in this evaluation. These time series were 
selected based on their “interesting” graphical properties and do not represent a random sample of 
PCT data. For nine of the PCCs the data are available from 1987; for the other eight data the earliest 
available year is 1990. In addition to the exponential smoothing models and current model, the mean 
model is used as a “benchmark” with which to compare the forecasts. 

A side-by-side comparison of the various PCT forecasts is shown in Table 2. The highlighted forecasts 
are those of the forecast model selected by the proposed methodology and the dotted line represents 
the forecast horizon. The point forecasts, which represent the “likely average PCT” are in regular text 
and the interval forecasts, which represent the “likely maximum PCT” are italicized. Under each PCC, 
“flags” are displayed when an upper prediction interval is exceeded. These flags do not specify the 
year for which the UPI was exceeded and reflect decimal values not displayed in the table. Table 3 is a 
summary chart of the MAPE for the different forecast models. Again the highlighted values are those 
that represent the MAPE of the methodically selected model and the bold values represent the minimum 
MAPE for the particular PCC. In only three cases, the minimum MAPE was not generated by the 
exponential smoothing models. As can be seen by the average MAPE at the bottom of the column, on 
average, the ES models yielded considerably more accurate forecasts than those of the mean and 
current models. However, all three ES model performed comparably to one another. Nonetheless, the 
average MAPE of the forecasts using the BIC model selection method is smaller than that of any one 
forecasting model. Taken as a whole, this competition is an indicator that the ES models utilized by the 
proposed methodology perform better than the current model and that the proposed model selection 
process performs adequately at selecting best of these available models. OPP believes the proposed 
exponential smoothing method for forecasting PCT will better promote EPA’s goal of protecting the 
environment and human health by providing better estimates of pesticide use in future years. 
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Table 3  Accuracy Measurements




